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Slow dynamics in supercooled liquids is investigated on the basis of the trapping diffusion model
which takes account of two types of diffusive dynamics, jump motion and stray motion. Parameters
of the model are determined in such a way that the waiting-time distribution of the model agrees
with those found for a binary soft-sphere system through molecular-dynamics simulation. With
the use of the coherent-medium approximation, the frequency dependence of the self-part of the
dynamical structure factor S,(q,w) and the generalized susceptibility x;(q,w) is obtained. Above
the glass-transition point, there exist frequency regions where S,;(q,w) shows a power-law decay,
corresponding to « relaxation and (3 relaxation, which are shown to be caused by the subanomalous
diffusion due to the jump motion and by the stray motion, respectively. This indicates that above the
glass-transition point there exists a certain time window where the intermediate scattering function
F,(q,t) shows a stretched exponential decay. Below the glass-transition point, Fy(q,t) decays in
a stretched exponential form in the long-time limit, which is caused by the anomalous diffusion
due to the jump motion. Accordingly, Ss;(q,w) in the static limit is shown to be a cusp between
the glass transition and a certain temperature below the freezing point, and to diverge below the
glass-transition point. The a-relaxation time determined from the position of the a peak of X} (q, w)
is shown to diverge at a certain temperature below the glass-transition point, in line with the Vogel-
Fulcher equation. The exponent representing the long-time decay of the non-Gaussian parameter
is also obtained, which agrees quantitatively with the result obtained for the soft-sphere system by
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molecular-dynamics simulation.

PACS number(s): 64.70.Pf, 61.43.Fs, 66.10.—x

I. INTRODUCTION

Slow dynamics in supercooled liquids has been at-
tracting much interest in recent years, since it is be-
lieved that the slow structural relaxation is a clue for
understanding the mechanism of glass transition in the
supercooled state of liquids and in the colloidal sus-
pensions [1]. Many experiments have been performed
for Cag 4Ko.6(NO3)1.4 (CKN). Mezei and co-workers re-
ported the neutron scattering experiments (time of flight
and neutron spin echo) on CKN [2,3]. They showed that
the dynamical structure factor [S(g,w)] deviates frow the
Debye type in the supercooled liquid state. Namely, it
shows in a certain frequency region two power-law decay
modes with exponent less than the Debye value. These
two modes are attributed to & and 8 dynamics in super-
cooled liquids predicted by a mode-coupling theory [4-6].
Cummins et al. [7,8] performed light-scattering experi-
ments for CKN in which the generalized susceptibility
[x"(¢,w) = wnS(g,w)] is measured. The principal peak
of x"(gq,w) shows slower decay than the Debye case and
the peak position is shifted to the lower-frequency side
as the temperature is reduced. The susceptibility also
shows the so-called # minimum, indicating a crossover
between two different regimes of dynamics. They esti-
mated the Kohlrausch-William-Watt (KWW) exponent
3 which characterizes the stretching of relaxation in the
form exp[—(t/t1)?] and found that 3 is a constant down
to a certain temperature far above the glass-transition
temperature Ty. The ac conductivity o(w) for CKN has
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also been reported [9]. As the frequency is increased from
zero, o(w) increases, suggesting that a dispersive trans-
port must be involved as in the impurity conduction [10].

There have been many reports which suggest the exis-
tence of at least two kinds of such slow dynamics in su-
percooled liquids such as orthoterphenyl [11], Salol [12],
and poly(propylene glycol) [13] and in colloidal suspen-
sions [14] near the glass transition point.

Extensive molecular-dynamics (MD) simulations have
been carried out in recent years to elucidate the micro-
scopic mechanism of glass transition for soft-core systems
[15-17], Lenard-Jones systems [18], and ionic melts [19)].
Because of the restricted computation time, the total
length of simulation and the time step are limited, which
puts the boundary to the observation window both in
the high- and low-frequency regions. The main results
obtained from the MD simulation can be summarized as
follows. (i) There is a time region in which the interme-
diate scattering function shows a stretched exponential
decay. (ii) The dynamical trait changes at some temper-
ature T, above the glass-transition temperature, which
can be considered as a kinetic transition. (iii) Two types
of diffusive motions exist above and below T in the time
scale much slower than that of the microscopic motion.

These extensive studies of glass transition were
prompted by the predictions made by the mode-coupling
theory. The mode coupling theory of glass transition was
first proposed by Leutheusser [20] and Bengtzelius et al.
[21]. They showed that the glass transition could be un-
derstood as an ergodic to nonergodic transition due to
nonlinear coupling in the density fluctuation mode of a
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specified wave vector. The interaction they employed,
however, always yields the Debye-type decay of the cor-
relation function which does not agree with experiments.
Gotze et al. [4-6] investigated extensively an improved
version of the mode-coupling theory, including interac-
tions to various orders of the density fluctuation itself.
Under certain scaling assumptions, they showed the ex-
istence of two regimes of relaxation which are called o
(long time) and B relaxation (short time). The a re-
laxation, which is characterized by a power-law decay of
the dynamical structure factor, exists down to a certain
temperature T, above T, and is supposed to disappear
below T.. In the time domain, the o relaxation is seen
as a stretched exponential decay of the correlation func-
tion. In the (-relaxation regime, the correlation func-
tion decays in power law to a certain limiting value and
the crossover between o and (3 relaxations can be seen
as a minimum of the generalized susceptibility. These
predictions have been shown to be in line with some of
experimental observations [7,8] and MD simulations [16].
However, some predictions have been shown to contra-
dict to experiments or MD simulations. For example,
the KWW exponent 3 is shown not to be constant as a
function of temperature [11,22], in contrast to the pre-
dictions of the mode-coupling theory. Furthermore, data
analysis of the light-scattering experiments by Cummins
et al. [7,8] has strongly been criticized by Zeng et al. [23].

These defects of the mode-coupling theory is consid-
ered to be due to the fact that the jump motion is ne-
glected in the theory. Gotze and co-workers [24,25] in-
troduced an extended mode-coupling theory in which an
interaction between the density mode and the current
mode is included. They viewed this interaction as pro-
ducing the relaxation of the density mode due to hop-
ping motion of atoms. The extended mode-coupling the-
ory was applied to analyze the behavior of x"(q,w) of
CKN and Salol obtained by light-scattering experiments
[26]. Their extensive analysis revealed that the hopping
motion plays a significant role in determining the relax-
ations. This poses two problems. (i) Since the hopping
eliminates the criticality, the analysis based on the scal-
ing assumption around the criticality loses its sense. (ii)
The hopping is a stochastic dynamics of localized atoms
and one needs many different modes to describe a local-
ized atom, which will invalidate the single mode analysis
of the mode coupling theory.

Recently, we proposed a trapping diffusion model of
glass transition based on the hopping dynamics of atoms
in a mesoscopic scale [27,28]. In this model the glass tran-
sition can be understood as a transition from Gaussian to
non-Gaussian dynamics. The trapping diffusion model is
a phenomenological model, where the stochastic dynam-
ics is extracted by coarse-graining rapid vibrations. We
determined the transition-rate distribution for the jump
motion from the information obtained by MD simulation
[29]. Namely, we employed a power-law distribution for
the jump rate in the trapping-diffusion master equation
and the exponent of the distribution (p) is considered a
parameter determined by the thermodynamic state. Us-
ing the coherent-medium approximation [30], we showed
that the glass transition occurs at p = 0.

In this paper we study the dynamical properties of
supercooled liquids by extending the trapping diffusion
model to include an oscillatory-diffusive motion in the
theory. We analyze the frequency dependence of the
dynamical structure factor and the generalized suscep-
tibility for the entire frequency region. We show that a
relaxation can exist above the glass-transition point due
to the subanomalous dynamics caused by the fact that
the second moment of the waiting-time distribution di-
verges. The low-frequency limit of the dynamical struc-
ture factor is shown to be (i) divergent like 1/f noise
below the glass-transition point and (ii) a cusp between
the glass-transition point and a kinetic transition point.
In Sec. II, we first discuss what is meant by “slow dynam-
ics” and introduce the trapping diffusion model, focusing
on the necessity of such model. We also summarize the
coherent-medium approximation in Sec. II, which is uti-
lized in the following analysis. In Sec. III, we present
the dynamical properties of undercooled liquids charac-
terized by the dynamical structure factor. We first ana-
lyze the low-frequency behavior and the high-frequency
limit of the self-part S,(q,w) of the dynamical structure
factor and then we study if there exist frequency regions
where the dynamical structure factor decays in a power-
law form with exponent less than the Debye relaxation.
We also discuss the relaxation time determined from the
a peak of x7/(q,w). We show that the relaxation time di-
verges exponentially at p = —1 below the glass-transition
point (the Vogel-Fulcher behavior). In Sec. IV, we inves-
tigate the behavior of the non-Gaussian parameter whose
long-time decay is determined by the a-relaxation pro-
cess. We show that the exponent determining the decay
deviates from unity at a certain temperature above the
glass-transition point. We will make a quantitative com-
parison of this behavior with MD simulation. We give
conclusions in Sec. V.

The main result of the present study is that the jump
motion gives rise to the a relaxation whose characteristic
time appears to diverge at some point below the glass-
transition point, and the oscillatory-diffusive motion pro-
duces the 3 relaxation. Below the glass-transition point,
the system is in the anomalous diffusion regime, where
the first moment of the waiting-time distribution diverges
and one expects to see a superslow dynamics in much
longer time window which is signified in the stretched
exponential decay of correlation function and the 1/f-
type behavior of S,(q,w) near w = 0.

The trapping diffusion model is intended to apply to
supercooled state of simple liquids, where the structural
relaxation is caused by translational motion of individual
atoms. It will also apply to some ionic melts [19]. It
requires further studies to see if it is applicable to so
called strong glass formers.

II. TRAPPING DIFFUSION MODEL
A. Slow dynamics

In regular simple liquids, the structural relaxation
is known to be Debye type, or simple exponential
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exp(—t/7). This is because frequent random collisions
between atoms or molecules make the dynamics diffusive
and the system homogeneous. In many complex systems,
it has been known that the relaxation function takes a
different form such as exp[—(¢/7)?] with 3 < 1, which is
called Kohlrausch-William-Watt relaxation [31]. In fact,
any relaxation function of the form f[(t/7)?], where f(z)
is a monotone decreasing function, represents a slow re-
laxation when 8 < 1, since the time required to relax a
certain percentage is longer than that for 3 = 1. The
slow relaxation manifests itself in the decay of the dy-
namical structure factor. It is easy to show that the
dynamical structure factor decays like ~ w2 for the De-
bye relaxation and ~ w=(1*8) for the KWW relaxation
for large w. As we mentioned in the Introduction, it is
now believed from experimental observations that there
exist two slow relaxation regimes, which appear in the
frequency regions ~10° Hz and ~10'! Hz. On the other
hand, MD simulation for supercooled liquids [17] revealed
two distinct dynamics in these frequency regions: One
is the jump motion and the other is an oscillatory mo-
tion of diffusive origin. These dynamics are apparently
produced by cooperative motion of a few tens to a few
hundred atoms [17,32], and it is important to understand
dynamical behavior produced by those dynamics. At the
present stage, it is virtually impossible to solve the many-
body problem analytically. It is also impossible to carry
out MD simulation long enough to obtain accurate statis-
tics since the time scale that we are concerned with is just
around the time region accessible by conventional com-
puters [33]. Therefore, it is practical and instructive to
construct a phenomenological model which represents ac-
curately the effect of the cooperative slow dynamics. The
model is necessarily based on a mesoscopic description in
time and space. With a good phenomenological model at
hand, it will be easier to understand the slow dynamics
from the microscopic model which will be pursued in the
future.

B. Trapping diffusion model

According to MD simulation [15,17], an atom appears
to perform two kinds of diffusive motions if the rapid os-
cillatory motion is averaged out: One is a motion bound
within a local area with a deviation of a few tens of
a percent of the mean interatomic distance (we call it
the stray motion) and the other is a jump motion with
jump distance in the order of the mean interatomic dis-
tance. Furthermore, the stray motion occurs in regions
of a few tens of atoms randomly distributed in the system
and the jump motion usually occurs at the boundary of
the region. The existence of a similar kind of domains
has also been suggested by Ngai et al. [34], Bendler and
Shlesinger [35], and Fischer [36] in somewhat different
context. From the data obtained by MD simulation for
binary soft spheres [17] we observe that (i) jump distances
have a narrow distribution for both diffusive motions and
(ii) the waiting-time distribution can be represented well
by a simple exponential function for the stray motion
and by a power-law function for the jump motion. The

second observation indicates that the jump-rate distri-
bution will be sharply peaked for the faster motion and
be a power-law function for the slower motion. Noting
that the distribution of the number of neighboring atoms
is also sharply peaked, we arrive at the following meso-
scopic phenomenological model (see Fig. 1). An atom
at a given site s performs a stray motion between s and
neighboring position us (|us| is of the order of 30% of
the average interatomic distance) with a constant jump
rate wp. Occasionally, it makes a long jump motion to
site s’ with jump rate ws. The jump rate for this motion
is assumed to depend only on the origin of the jump and
not on the destination of the jump, because a structural
relaxation following the jump will eliminate the correla-
tion between forward and backward jumps. We further
assume that the distribution of site {s} will not be im-
portant and sites {s} form a regular lattice, which can be
conveniently assumed to be a simple cubic lattice. Con-
sequently, we describe the motion of a tagged atom by
the following trapping master equation [37]:

P(s,t]s0,0) = > _ wq P(s',|s0,0)

+ Z wpP(s + us, t|so, 0)

_{.zs;wﬁ%:w,,}p(s,qso,m, (1)

P(s + u,,t|sg,0) = wpP(s, t|so,0)
—wpP(s + uy, tse, 0), (2)

where P(x,t|sg,0) denotes the probability that the
tagged atom is at x at time ¢t when it was at s¢ at
time ¢ = 0, the summation for s’ is taken over nearest
neighbors of site s, and {u,} represent neighboring sites
to which the atom on s can stray. Laplace transform

P(x,ulso) = [~ e “*P(x,t|so,0)dt then satisfies

X

FIG. 1. The trapping diffusion model. A tagged atom
makes a jump motion among sites {s} described by the trap-
ping master equation with jump rate distribution (7). It
makes a stray motion from s to s + u, with a constant jump
rate wy.
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[u + Z ws + ; w,,] P(s, u|so) — Z wy P(s', u|so)

- Z wa’(s + ug, ulSg) = Os,800u,,0, (3)

u,

[u+ wb]ﬁ(s + u,, ulsg) — 'wa’(s, ulsg) = 0s,600u,,0- (4)

Decimating P(s +u,,u|sg) from these equations, we find

[u + f,\—"‘,{wb - i’fwb} + ;w.] P(s,ulso)

— Zw!;P(s',u|So) = 65,80' (5)

We denote by 2’ the number of sites to which the tagged
atom can stray and set v’ = u + z'wpu/(u + wp). Then
Eq. (5) reduces to

[u' > w.] Plosulso) = 3 e PL& ) = s O

which is nothing but the master equation for the trapping
diffusion process [37]. As we discussed above, jump rate
{ws} can be assumed to obey the power-law distribution

L1122 (0 < w,s < wop)

®(w,) = { wg*?

: ()
0 (otherwise)
where p is a parameter of the model which represents
the thermodynamic state of the system. In fact, from
a comparison of the waiting-time distribution we found
(29]

p=2398[y —Teg]® (Tegr <Ty) (8)

for binary soft-sphere mixtures, where for N; atoms of
mass m, and diameter 0, and N, atoms of mass my and
diameter o2 in volume V

i) (22) o)

reﬂ'
g1

Oeff = Z Z wamﬁaﬁﬁ, (10)
B

a

and
Oq
Vop = E(Tﬁ)lz, (11)

with the assumption that oo = (04 + 08)/2, T* =
kBT/E, To = Na/(Nl + Nz), and n* = (N1 + Nz)Ui’/V
For this system, the freezing point is at [eg = 1.15 and
the glass-transition point is expected to be I'.g = 1.58
[17,28].

Equation (6) cannot be solved analytically since {ws}
are random. We employ the following coherent medium
approximation for the master equation (for details, see
Ref. [30]). Namely, we find a u-dependent coherent jump
rate wc(u) by the condition

Wy — We

/:o we + (ws — we)(1 — u' Ppyp)

Here P,, = Pc(so,ulso) and the coherent Green’s func-
tion P.(s,u|so) satisfies Eq. (6) where all w, are replaced
by w.(u). When we need numerical calculation we ap-
proximate P,, by 2{u’ 4+ zw. + [/ (v +22w.)]*/2} 1. As
we have shown already [27], there exists a glass transition
at p = 0, where the diffusion constant vanishes strictly
below p = 0. We also showed that the transition at p =0
can be understood as a change of dynamics from Gaus-
sian to non-Gaussian [28].

®(w,)dw, =0. (12)

III. DYNAMICAL STRUCTURE FACTOR

The self-part of the dynamical structure factor Ss(q, w)
is, by definition, given by

1 wyB(q)
S.(q,w) = ;Re[l + m]

x Y etae=2) (P(s, iw|so)), (13)

where the angular brackets () denote an ensemble av-
erage and B(q) = ), €*M™ is assumed to be real and
independent of s. In the coherent medium approximation
we approximate the ensemble average by

(P(s,u|so)) = P.(s,u|so)- (14)

It may, sometimes, be convenient to look at the general-
ized susceptibility x,(q,w) defined by

i vl L

x Y elale=m)(P(s, —iw|so)).  (15)
Thus

Su(a,w) = ~Tmx,(a,0)/w (16)

A. Low-frequency behavior

It is straightforward to derive the low-frequency ex-
pansion of P,(s,iw|sg), [38] from which we can obtain
the low-frequency limit of S,(q,w). In the static limit,
we find that for p > 0, S,(g,0) is in proportion to the
inverse of the static diffusion constant

1+p(q) d?

S.(q,0) = “re(a) D(0)’

(17)

where a is the lattice constant of the underlying lattice
which is the scale of the length of the model. Here ¢(q)
is given by

c(q) =z —1(q), (18)
with
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exp[igq(s — s')]. (19)

Table I summarizes the low-frequency expansion of
Ss(q,w). At w =0 5,(q,w) becomesa cusp for1 > p >0
and divergent when 0 > p > —1. Note p = 0 is the glass-
transition point for this model. Namely, in the glass state
one expects to see 1/ f-noise-type behavior and above T
one expects to see a new type of singularity of S,(q,w).
At the glass transition point, a logarithmic divergence of
Ss(q,w) at w = 0 is expected.

B. High-frequency behavior

The high-frequency expansion of S,(q,w) can be ob-
tained exactly since the coherent medium can be deter-
mined exactly in the limit u — oo [39]. We find after
simple manipulation

1
wo |w ™2, (20)

1 +
Sela,w) ~ L |blayws +e(a)2 15

where
b(q) = ' - B(q). (21)

Therefore, S,(q,w) in the high-frequency limit decays
in the same form as a Lorentzian with width b(q)w;, +

c(a) &5 wo.

TABLE I. The low-frequency expansion of S,(q,w).
Ss(g,0) = (1/m)[1 + B(a)l(p + 1)/c(a)pwo for p > 0 and
S:(q,0) = oo for p < 0. S(z) = sin(wz)/mz and
p1 = 1.51628... is the Watson integral of the simple cubic
lattice. For p = 3/2, a term in proportion to w?/? appears
whose coefficient is the sum of those in the second and third
rows with p = 3/2.

14 [S,(q,w) _ Ss(qv 0)]/Ss(qv O)

()

O S

1>2p>0 _co;if)p) [ul(;wt z')] o
5+(q,w)wo

p=0 J:fé;‘) ln[”l(zlwt, z’)w]

- e
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C. a and 8 relaxation

In order to obtain the frequency dependence of S,(q,w)
in the entire frequency domain we solved numerically the
self-consistent nonlinear equations (7) and (12). Figures
2(a) and (b) show the frequency dependence of S,(q,w)
and Imy,(q,w) respectively. To see if S,(q,w) shows a
power-law decay, we plot the logarithmic derivative of

Ss(q,w)

o= _ Ologyg S,(q,w)’ (22)
dlog,qw

against log,ow in Fig. 3. When o is a constant in a
certain frequency region, S,(q,w) behaves as S,(q,w) ~
w™7 there. Note 0 = 0 for low frequencies and o = 2
for high frequencies for the Debye relaxation. From Fig.
3, we observe that for 1 > p > 0, there is a frequency
region where o is nearly a constant ~ 1.8. In the glass
state, the region becomes obscure and we cannot deter-
mine the constant accurately. In addition o takes a min-
imum at the high-frequency side which corresponds to
the crossover between the two dynamics we are consider-
ing. This crossover is therefore seen as a slow dynamics
corresponding to 3 relaxation. When p < 0, i.e., in the
glass region, o at low frequencies takes a finite constant,
which behaves similar to a relaxation. We call it the o/

10 T T
(a)
p=-0.5
= i
2 [ p=00
3
g;' p=05
w O 1
h 1
=
o) L
o L 4
F
‘h . 1 |
~19 5 0 5
10g10[ w/Wo]
GI T T
| b
R pe05 (b)
3
g
_o
; p=0.5
{2}
o £=0.0
3T 5 0 5
log1ol w/Wo)

FIG. 2. The frequency dependence of (a) S.(q,w) and (b)
x4 (q,w) for p = 0.5, 0, and —0.5. q = (1/a)(0.2,0.2,0.2),
z' = 6, and |u,| = 0.3a are assumed, a being the lattice
constant of the underlying simple cubic lattice. u,’s are put

on the bond of the simple cubic lattice.
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logyol w/wo)

FIG. 3. The logarithmic  derivative o =
—08log,, S.(q,w)/dlog,,w is plotted against log,ow. For
p > 0, o is nearby constant for 10™% < w/we < 1, indicating
Ss(q,w) ~ w™7 in this region (the a relaxation). For p < 0,
o is again constant for much smaller frequencies, which corre-
sponds to the o' relaxation. The deep dip around w/wo ~ 10

relates to the 3 relaxation.

dynamics, which will be observed in much longer time
scale in the glass state.

From these figures we can make the following obser-
vations. First, when o is a constant for larger frequen-
cies, we will have the relaxation function of the form
exp[—(t/7)P] with 8 ~ o — 1 in the corresponding time
window. We show the dependence of the KWW expo-
nent 3 on p in Fig. 4. The KWW relaxation is thus
expected to occurs above T, in a certain time window.
In the o’ dynamics, we have the KWW relaxation in
the long time limit, whose stretching exponent 3’ for a
small wave vector is also shown in Fig. 4 by the dashed
line. These behaviors are consequences of the distribu-
tion Eq. (7): When p < 0, the mean waiting time is
divergent and the system is in the anomalous diffusion

ﬁlﬁ,

%9 0 1 2

FIG. 4. The KWW stretching exponent 3 for the o relax-
ation is shown as a function of parameter p. Open circles
show (3 determined from Fig. 3 by 8 = o — 1. Solid circles
indicate that the determination is less accurate. The dashed
line is B’, the stretching parameter for the o' relaxation for

small q.

regime, where the mean square displacement diverges
with exponent less than unity, giving rise to vanishing
diffusion constant. When 0 < p < 1, the system is in
the subanomalous regime where the second moment of
the waiting-time distribution is divergent while the first
moment exists, namely, the variance of the waiting-time
distribution does not exist. The mean square displace-
ment acquires a divergent term with exponent less than
unity besides a t-linear term [38]. We thus conclude that
o' dynamics is due to the anomalous diffusion, a dy-
namics is due to the subanomalous diffusion of the jump
motion, and 8 dynamics is caused by the stray motion.

D. Relaxation time for the a process

It is known that the relaxation time determined from
the a peak of the generalized susceptibility is in propor-
tion to the shear viscosity in normal liquids. Therefore
it is tempting to see the dependence of the relaxation
time of the a peak on p for the present model, although
the present treatment provides only the single particle
properties. We define the relaxation time 7, by

2T

Ta o (23)
where wpax is the frequency at which x)(q,w) takes its
maximum. We show by the solid circles in Fig. 5 the p
dependence of 7, obtained from Fig. 2(b). It is inter-
esting to note that for p > 1, 7, is in proportion to the
inverse of the diffusion constant D = p/(p+1) in good ap-
proximation. In fact, the dashed curve in Fig. 5 showing
374(p + 1)/p is an excellent fit of 7, for p > 1. The ob-
served relaxation time deviates from this behavior when
p < 1. We can numerically fit the entire dependence of
To ON p by

1.4
p+2
78t = 99 exp [1.15 (m) ] (24)
1G T T 1 1 T T 1 7T T T T T T

FIG. 5. The a-relaxation time 7, is shown as a function of
p. The solid circles are obtained from the trapping diffusion
model. The solid curve is a fit to the data by Eq. (24) and
the dashed curve is a fit for p > 1 by a curve in proportion to
the inverse of the diffusion constant.
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which is shown by the solid curve in Fig. 5. Equation (24)
indicates that p = —1 appears as the Vogel-Fulcher point
where 7, diverges. It should be remarked that (p+2)/(p+
1) is the ensemble average of the jump rate itself (ws) and
the diffusion constant is given by 1/{(w;!) = p/(p + 1)
and thus the Stokes-Einstein relation does not hold [40].
It is interesting to note that for p < —1 the jump rate
distribution and hence the waiting-time distribution is
not normalizable. Equation (24) is simply the numerical
fit to the data and the analytical derivation of the form
is currently under investigation.

IV. NON-GAUSSIAN PARAMETER

In order to get some quantitative comparison of the
present theory with MD simulation, we study the decay
of the non-Gaussian parameter A(t) [41] defined by

= 3@ —r(OF)
A= S - rope )

where r(t) = s(t) + u,. When (s?) < (u?), we can show
that

3 1
A(t) ~ -5-b42—::—:—§zwot, (26)

where b is the ratio of jump distances due to the jump
motion and the stray motion. On the other hand, when
(s?) > (u?), we find that for 0 < p < 1

p
Tp 2p my\",_
Ay~ ——  — (| —= ) t~* 27
O~ e 667 (s 27
and for p > 1
1({1 2m 1
Ay~ 2L «2—1—] —. (28)
p |10  z(p?—1) ]| wot
- T ﬂ
o o ;
1 [ P
: 4
l ; I
© B |
05 -
ip :,"I’ « species 1 (500 particles) |
.', d’ o species 2 (500 particles)
[ - ‘," = species 1 (4000 particles)
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FIG. 6. The dependence of exponent & representing the
long-time decay of the non-Gaussian parameter on the ther-
modynamic parameter of the binary soft-sphere system. Var-
ious symbols show the result obtained from MD simulation
and the dashed curve is the behavior predicted by the trap-
ping diffusion model.

G(z) is the I function. Therefore, A(t) has a maximum
as a function of t, which has been utilized to determine
the glass-transition point [28]. We define an exponent
& such that A(t) ~ t7% as t — co. Using the relation
between p and I' in Eq. (8), we expect to see a I' de-
pendence of the exponent § for the soft-sphere system as
shown by the dashed curve in Fig. 6. This dependence
can directly be compared to MD simulation [42], which
is shown by various symbols. The quantitative agree-
ment is seen to be excellent. In paticular, the present
model predicts a transition around T'eg = 1.45 where §
deviates from unity. This can be identified as the kinetic
transition observed in various physical properties of the
supercooled soft-sphere liquids [15-17].

V. DISCUSSION

We have presented a detailed discussion of the dynam-
ical properties concerning the dynamical structure factor
for the trapping diffusion model and showed the strong
evidence which indicates that a relaxation observed in a
certain time window is due to the jump motion and S
relaxation is due to the stray motion. We also showed
that the relaxation time for the a process diverges at
p = —1, not at p = 0, where the diffusion constant van-
ishes, and that a superslow relaxation is expected in the
glass state. The present trapping diffusion model focuses
on localized atoms rather than the collective mode which
is utilized in the mode-coupling theory. According to
the mode-coupling theory, the system undergoes struc-
tural arrest at a certain temperature above the glass-
transition point. Therefore the description based on lo-
calized atoms will become more appropriate as the tem-
perature is reduced toward the glass-transition point. In
the mode-coupling theory, the jump motion is consid-
ered to play only minor role which makes the ergodic-
nonergodic transition smeared. In the trapping diffusion
model, the jump motion plays the essential role. Further-
more, in the mode-coupling theory one particular modes
with a special wave vector is focused upon. Therefore
the description of atomic dynamics based on the localized
picture is essentially different since many different modes
are needed to describe the localized atom. The trapping
diffusion model is a phenomenological description of the
organized motion which gives rise to a (a') and 3 relax-
ations. We can thus draw a scenario of the glass transi-
tion as follows: As the temperature is reduced below the
freezing point, collective dynamics ceases to dominate at
some temperature and the system shows large spatial in-
homogeneity due to the distribution of excess free energy.
In a region where the excess free energy is accumulated,
atoms perform a concerted diffusive motion localized in
the region which we call the stray motion (so called cage
effect: this is not the rattling motion in a fixed cage).
This dynamics is considered to be [ relaxation. Occa-
sionally, atoms near the boundary of the region make
a large deviation involving several atoms which cannot
be undone due to the structural relaxation. This is ob-
served as a jump motion which produces o and o' relax-
ations due to the spacial distribution of jump rates. The
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trapping diffusion model thus provides an excellent phe-
nomenological description of these dynamics and gives a
unified view of the glass transition and the slow dynam-
ics in supercooled liquids. It should be remarked that
a relaxation is observed above the glass-transition point
where the second moment of waiting-time distribution
diverges and o' relaxation exists temperature below the
glass transition where the first moment of waiting time
distribution does not exist. Therefore the relaxation dis-
cussed in Ref. [35] corresponds to a' relaxation in our
model. It is also interesting to note that the divergence
of the first moment does not imply the existence of the di-
vergence of the zeroth moment in general, and thus the
stretched exponential relaxation is not necessarily cou-
pled to Vogel-Fulcher behavior. We would also like to
comment on so called strong glasses such as SiO;. The
present trapping diffusion model applies to simple liquids
where rotational modes do not exist or do not play a sig-
nificant role in structural relaxation. Therefore it can
be applied to dipole relaxation or mechanical relaxation

when they are determined by translational motion. How-
ever, it will not be applicable to dielectric relaxation due

" to rotational motion. In the highly supercooled state, the

rotational motion in strong glasses can be stochastic and
thus rotational relaxation in such cases may be analyzed
in a similar manner to the present model, which will also
be an interesting problem to be studied.

The parameters characterizing the model in the
present study were chosen by comparing the waiting-time
distribution with MD simulation. It is desirable to de-
rive the distribution function of jump rates from a mi-
croscopic model, which will be studied in the future.
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